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The motion of membrane-bound objects is important in many aspects of biology
and surface chemistry. Here we derive some general relations for objects moving in a
surface film overlying a fluid of depth H . A solution to the problem of the drag can be
obtained from a two-dimensional system of integral equations. Here we focus on the
problem of an ideal needle moving edge-on (in the direction of its tip) or broadside-on
(perpendicular to the direction of the tip). It is shown that in comparison to the drag
on a circular disk a new scaling regime of the drag on a needle arises when the ratio
between surface shear viscosity and subphase viscosity ηs/η is smaller than the length
of the needle.

1. Introduction
Rheological measurements of polymeric or amphiphilic monolayers are a subject

of current investigation. They play an important role in the dynamic characterization
of surfaces in industries ranging from food and pharmaceutical to petroleum. The
measurement of surface shear viscosities was pioneered in the last century. The
channel flow rheometer was developed by Harkins & Myers (1937), Jarvis (1965),
and Mannheimer & Schechter (1970) and revived recently by Schwartz, Knobler &
Bruinsma (1994). Cylindrical rheometers have the advantage of using symmetry
arguments to simplify the hydrodynamic equations and therefore the mathematical
analysis. Consequently there is a rich variety of different cylindrical symmetric
rheometers (Langmuir & Schaefer 1937; Fourt & Harkins 1938; Goodrich &
Chatterjee 1970; Lifshutz, Hedge & Slattery 1971; Goodrich, Allen & Poskanzer
1975; Oh & Slattery 1978; Klingler & McConnell 1993; Ghaskadvi et al. 1997;
Barentin et al. 1999; Steffen et al. 2001; Wurlitzer, Schmiedel & Fischer 2002) the
mathematics of which has been outlined by Saffmann & Delbrück (1975), Hughes,
Pailthorpe & White (1981) and Stone & Ajdari (1998).

Recently interest has moved back toward non-symmetric needle-shaped rheometers
(Brooks et al. 1999; Ding et al. (2002b), Ding, Warriner & Zasadzinski 2002a)
through claims that needle-shaped objects should have some advantages because of
their sensitivity to the surface shear viscosity compared to the subphase rheological
background force. The needle viscometer, compared to the rotating knife edge and
other rheometers of cylindrical symmetry, has a lower ratio between the area of the
needle facing the subphase and the perimeter of the monolayer/needle boundary.
Therefore the sensitivity of a needle viscometer for the measurement of surface shear
viscosity should be better than that of a disk viscometer of comparable size.
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Figure 1. Sketch of a solid two-dimensional object immersed in a surface of viscosity ηs on
a subphase of depth H and viscosity η.

Here we derive the drag force on an ideal needle of vanishing thickness and
we provide the mathematical description using an approach similar to Levine,
Liverpool & MacKintosh (2003), which differs from the work of Shahin (1986).
We show that the sensitivity of a disk and a needle viscometer is exactly the same
in the high-surface-viscosity regime if the length of the needle is 3.3 (10.9) times the
diameter of a comparable disk viscometer when the needle moves in deep (shallow)
water. The needle viscometer is indeed more sensitive to the surface shear viscosities
than comparably sized disk viscometers if the value of the ratio between the surface
and bulk viscosity lies between the width and the length of the needle. However
in this regime, in contrast to assumptions made in Brooks et al. (1999) and Ding
et al. (2002a, b), the relation between drag force and flow velocity is nonlinear in the
Boussinesq number. In the regime where the viscosity ratio is smaller than the width
of the needle sensitivity to the surface viscosity is lost. As a consequence, surface
shear viscosity data acquired with the needle viscometer at low Boussinesq numbers
needs to be reanalysed.

2. Hydrodynamic drag on objects of arbitrary shape
Consider a solid two-dimensional object moving in a monolayer of surface shear

viscosity ηs (the surface pressure and surface viscosity have the dimensions of their
three-dimensional analogues muliplied by a length) on top of a laterally infinitely
extended subphase of viscosity η and depth H (figure 1). The flow of the subphase is
described by Stokes’ equation and the continuity equation:

−∇p + η∆ u = 0,

∇ · u = 0,

}
(2.1)

where p is the subphase pressure and u denotes the subphase velocity which vanishes
at the bottom (z = 0) of the subphase layer. The dynamic stress tensor is given by

σ = −p1 + η(∇u + [∇u]t ) (2.2)

where 1 denotes the unit tensor in three-dimensional space. The air/water surface
is assumed to be flat and located at the position z = H . At this surface boundary
conditions have to be fulfilled. Within the area of the surface A covered by the
two-dimensional object the surface velocity us = u(z = H ) must coincide with the
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velocity U ex of the object:

us = U ex for r s ∈ A (2.3)

while at the monolayer-covered surface the flow can be approximated by an
incompressible 2d-Stokes flow:

−∇sπs + ηs∆sus + η
∂u
∂z

∣∣∣∣
s

= 0

∇s · us = 0


 for r s �∈ A, (2.4)

where πs is the surface pressure, us the surface velocity and ∇s denotes the surface
gradient. The surface dynamic stress tensor is given by

σ s = −πsδ + ηs(∇sus + [∇sus]
t ) (2.5)

where δ = 1 − ezez is the surface idem factor. The general solution of (2.1) can be
written as

u = ∇Ξ + ∇ × (ezΨ ) + r s · ∇s∇Π + ez

∂Π

∂z
,

p = −η
∂2Π

∂z2
,


 (2.6)

where r s = δ · r is the projection of the vector r onto the monolayer plane, and Ξ, Ψ

and Π are scalar functions solving the Laplace equation (Happel & Brenner 1983).
From the velocity boundary conditions uz(z = H ) = 0 and from the incompressibility
of the monolayer phase it follows that Π = Ξ = 0 and all streamlines are lying in
planes parallel to the air/water interface (Stone & Ajdari 1998). The drag force on
the object arises from a subphase and a monolayer component:

Fdrag = Fsub + Fmon,

Fsub =

∫
A

σ · ez d2r s,

Fmon =

∮
∂A

σ s · n ds.




(2.7)

One way of solving the set of equations (2.1), (2.3), (2.4) is to replace the boundary
condition (2.3) by the equation.

f − ∇sπs + ηs∆sus + η
∂u
∂z

∣∣∣∣
s

= 0

∇s · us = 0


 for r s ∈ A, (2.8)

where f is a surface force density, to be chosen such that (2.3) is satisfied. The velocity
field u fulfils the Laplace equation and hence can be written as

u(rs + zez) =

∫
d2k eik · rs

sinh kz

sinh kH
ûs(k). (2.9)

Fourier transformation converts (2.4) and (2.8) into a two-dimensional algebraic
matrix equation. The Fourier transform of (2.8b) is k · û = 0. Multiplication of
δ − kk/k2 by the Fourier transform of (2.8a) then leads to this algebraic equation for
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the velocity ûs:

ûs(k) = Ô(k) · f̂ (k),

Ô(k) =
k2δ − k k

ηk3(coth kH + Bka)
,


 (2.10)

where Ô(k) is the surface Oseen tensor, a is a typical length scale of the object and

B =
ηs

ηa
(2.11)

is the Boussinesq number. The boundary conditions (2.4) and (2.8) are diffuse in
Fourier space and it is useful to perform an inverse Fourier transformation which
leads to

us(r s) =

∫
A

d2r ′
s O(r s − r ′

s) · f (r ′
s) (2.12)

with O(r s) the Oseen tensor in real space. The inverse Fourier transformation can
be performed analytically in the deep water limit H → ∞ and shallow water limit
H → 0. One finds (Appendix A)

O(rs, H → ∞) =
2r sr s − δr2

s

r2
s

1

4ηrs

{
H1

(
rs

Ba

)
− N1

(
rs

Ba

)
− 2Ba

πrs

}

+
r2
s δ − r sr s

r2
s

1

4ηBa

{
H0

(
rs

Ba

)
− N0

(
rs

Ba

)}
, (2.13a)

O(r s, H → 0) =
2r sr s − δr2

s

r2
s

H

2πηr2
s

[
1 − rs√

BHa
K1

(
rs√

BHa

)]

+
δr2

s − r sr s

r2
s

1

2πηBa
K0

(
rs√

BHa

)
, (2.13b)

where Hn, Nn, and Kn are Struve functions, Bessel functions and modified Bessel
functions of the second kind of order n (Gradshteyn & Ryshik 1981, 8.550, 8.403 and
8.446). Oseen’s tensor satisfies the following asymptotic behaviour:

O(r s/Ba → 0, H → ∞) ≈ 1

4ηπBa

r sr s

r2
s

+
ln(2Ba/rs) − γ − 1/2

4ηπBa
δ, (2.14a)

O(r s/Ba → ∞, H → ∞) ≈ 1

2πηrs

r sr s

r2
s

− Ba

2πηr2
s

2r sr s − δr2
s

r2
s

, (2.14b)

O(r s/Ba → 0, H → 0) ≈ 1

4ηπBa

r sr s

r2
s

+
ln

√
4BaH/r2

s − γ − 1/2

4ηπBa
δ, (2.14c)

O(r s/Ba → ∞, H → 0) ≈ H

2πηr2
s

r sr s − δr2
s

r2
s

− H 1/4

23/2π1/2η(Ba)3/4r
1/2
s

exp(−rs/
√

BaH )
2δr2

s − r sr s

r2
s

, (2.14d)

where γ = 0.577216 denotes Euler’s constant. Equations (2.3) and (2.12) define a two-
dimensional integral equation for the force density f . The drag force on the object in
terms of the force density f is given by

Fdrag =

∫
A

d2r s f (r s). (2.15)
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3. The drag force on an ideal needle
3.1. (Edge-on) motion

If the object is a thin needle of length 2a and width 2b where b 	 a and b 	 Ba

moving in the direction of its tip (edge-on), then the needle velocity, the force density
and all vectors connecting different positions on the needle point along the needle.
For this reason the problem reduces to a one-dimensional integral equation, where
the width b drops out of the equation. Choosing the x-direction as the direction of
the needle this equation is

ηUa

F
‖
drag

(H → ∞) =

∫ a

−a

dx ′ a

4|x − x ′|

[
H1

(
|x − x ′|

Ba

)
− N1

(
|x − x ′|

Ba

)
− 2Ba

π|x − x ′|

]
τx(x

′)∫ a

−a

dx ′ τx(x
′)

for all −a < x < a, (3.1a)

ηUa

F
‖
drag

(H → 0) =

∫ a

−a

dx ′ Ha

2π|x − x ′|2

[
1 − |x − x ′|√

BHa
K1

(
|x − x ′|√

BHa

)]
τx(x

′)∫ a

−a

dx ′ τx(x
′)

for all −a < x < a, (3.1b)

where τx = 2bfx is the x-component of a one-dimensional force density. For large
Boussinesq number B → ∞ the asymptotic expression of the Oseen tensor for
r s/Ba → 0 can be used, and the solution to (3.1) is

τx(x) =
F

‖
drag

π
√

a2 − x2
for B → ∞ (3.2)

which leads to

4πηaU
B

ln(4B) − γ + 1/2
for B → ∞, H → ∞ (3.3a)

F
‖
drag =


4πηa2U

H

BH/a

ln(4
√

BH/a) − γ + 1/2
for B → ∞, H → 0. (3.3b)

This should be compared with the drag on a circular disk which is (Saffmann &
Delbrück 1975; Hughes et al. 1981; Barentin et al. 1999):

4πηaU
B

ln(2B) − γ
for B → ∞, H → ∞, (3.4a)

F disk
drag =


4πηa2U

H

BH/a

ln(2
√

BH/a) − γ
for B → ∞, H → 0. (3.4b)

Hence for large Boussinesq numbers at similar viscosities and water depths, the drag
on a needle equals that on a disk if its length is 2

√
e = 3.3 (H � a) or 4e = 10.9

(H 	 a) times longer than the diameter of the disk. For B → 0 the Oseen tensor
transmits a shorter-range hydrodynamic interaction such that the force profile τx(x)
flattens with less pronounced singularities at the edges of the needle. A constant force
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profile

τx(x) =
F

‖
drag

2a
for B → 0 (3.5)

becomes a very good approximation except close to the edges. Averaging the velocity
profile across the needle with this force profile gives (Appendix B)

2πηaU

ln(0.96/B)
for B → 0, H → ∞, (3.6a)

F
‖
drag ≈




4ηa2U

H

√
BH/a

(
1 +

ln(1/
√

BH/a) + γ + 1

π

√
BH/a

)
for B → 0, H → 0. (3.6b)

Equation (2.5) holds in frequency space, i.e. σ s = σ s(ω), πs = πs(ω) and ηs = ηs(ω)
such that time-dependent oscillatory movements of the needle may also be described.
In this case surface viscoelastic effects might render the viscosity and hence the
Boussinesq number B complex. Both F

‖
drag/U and B will have a phase and an

amplitude. No a priori knowledge of the frequency dependence of the viscosity ηs(ω)
is required since in the linear response regime and in the absence of inertial effects
the Stokes equation for different frequency decouples.

For Boussinesq numbers of order B ≈ 1 the force profile τx(x) lies between
equation (3.2) and equation (3.5) and one needs to solve equation (3.1a) numerically.
Discretizing equation (3.1) turns the integral equation into a matrix inversion problem,
which may be solved by standard techniques (Appendix C). In Figure 2 we double
logarithmically plot the amplitude of the drag force on a needle in deep water versus
the Boussinesq number amplitude |B|. As can be seen both, asymptotics fit the data
well in the regions |B| < 0.1 and |B| > 2. In the region which is not fitted well by the
asymptotics the data are also displayed on a linear scale. In the entire range the force
amplitude is almost independent of the Boussinesq number phase arg (B) and surface
viscous or surface elastic effects lead to the same force amplitudes. The distinction
between viscous and elastic effects can be determined from the drag force phase
arg(F

‖
drag/U ). The Boussinesq number phase arg(B) is proportional to the drag force

phase arg(F
‖
drag/U ) with a factor depending on the Boussinesq number amplitude

|B|. For large Boussinesq number amplitudes both phases arg(F
‖
drag/U ) and arg(B)

are the same, while for smaller Boussinesq number amplitudes the phaselag between
force and velocity vanishes logarithmically.

Figure 3 shows the drag on the needle on a shallow subphase. The asymptotic
curves fit the data in the regions |BH/a| < 10−3 and |BH/a| > 1. The cross-over
region is plotted linearly in the inset. The phase between force and velocity
changes from half the phase of the Boussinesq number toward the full phase
arg(B)/2 < arg(F/U ) < arg(B). As can be seen from both figures a linear fit in
the Boussinesq number as applied by Brooks et al. (1999) and Ding et al. (2002a, b)
contradicts both these findings.

3.2. Broadside-on motion

The x-, and y-components of the drag force and velocity are decoupled also for a
broadside-on motion (i.e. perpendicular to the direction of the tip). Let us choose the
x-coordinate as the direction of the motion and the y-direction as the direction of
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Figure 2. Amplitude and phase ratio of the drag force upon a needle of length 2a moving
edge-on in an incompressible surface of viscosity ηs upon a subphase of viscosity η and infinite
depth, plotted double logarithmically as a function of the Boussinesq number amplitude |B|
for three different phases arg(B). Dotted and dashed lines are asymptotics according to (3.3)
and (3.6). The cross-over region where none of the asymptotics describes the numerical data
is depicted in a linear plot in the inset of the figure.

the needle. The integral equation for the force density is then

ηUa

F ⊥
drag

(H → ∞) =

∫ a

−a

dy ′ a

4

∂

∂y

[
H1

(
|y − y ′|

Ba

)
− N1

(
|y − y ′|

Ba

)
− 2Ba

π|y − y ′|

]
τx(y

′)∫ a

−a

dy ′ τx(y
′)

for all −a < y < a, (3.7a)

ηUa

F ⊥
drag

(H → 0) =

∫ a

−a

dy ′ ∂

∂y

Ha

2π(y − y ′)

[
1 − |y − y ′|√

BHa
K1

(
|y − y ′|√

BHa

)]
τx(y

′)∫ a

−a

dy ′ τx(y
′)

for all −a < y < a, (3.7b)

and at large Boussinesq numbers we find the same asymptotic equation (3.2) for the
force profile on the needle with the argument x replaced by y. At small Boussinesq
number (3.5) remains valid for the deep water limit, while for the shallow water limit
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Figure 3. As figure 2 but for a subphase of depth H 	 a.

we find

τx(y) ≈
2F ⊥

drag

πa2

√
a2 − y2 for B → 0, H → 0. (3.8)

The asymptotic drag forces found from this are

F ⊥
drag =




4πηaU
B

ln(4B) − γ − 1/2
for B → ∞, H → ∞

4πηa2U

H

BH/a

ln(4
√

BH/a) − γ − 1/2
for B → ∞, H → 0

(3.9)

and

F ⊥
drag ≈ 2πηaU

1 − 1
2
B (ln(1/B) + γ )

for B → 0, H → ∞. (3.10)

At high surface shear viscosities a broadside moving needle experiences the same drag
as an edge-on moving needle if it is shorter by the factor 1/e than the edge-on moving
needle. In Figure 4 we double logarithmically plot the amplitude of the broadside
drag force on a needle in deep water versus the Boussinesq number amplitude |B|
for arg(B) = π/180, π/4 and π/2. Similarly to the edge-on movement, the amplitude
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Figure 4. Amplitude and phase ratio of the drag force upon a needle of length 2a moving
broadside-on in an incompressible surface of viscosity ηs upon a subphase of viscosity η and
infinite depth, plotted double logarithmically as a function of the Boussinesq number amplitude
B for three different phases arg(B). Dotted and dashed lines are asymptotics according to
(3.9) and (3.10). The cross-over region where none of the asymptotics describes the numerical
data, is depicted in a linear plot in the inset of the figure.

of the drag force is not sensitive to the phase of the Boussinesq number. In contrast
to the edge-on drag, the drag starts at a finite value for B = 0 and then increases.
The phase between the drag and the velocity is proportional to the phase of the
Boussinesq number arg(F/U ) ∝ arg(B) at large B.

Figure 5 shows the broadside drag on the needle on a shallow subphase. At
large Boussinesq numbers the drag amplitude increases with the amplitude of the
Boussinesq number independent of the phase. At small Boussinesq number the drag
also depends on the phase of the Boussinesq number.

4. Discussion
The drag force calculated here is that of an ideal (infinitely thin) needle immersed

in a monolayer of infinite extent. Real needles used in experiments have a finite
width and depth and lateral extent are finite. However, when Ba is small compared
to the lateral extent of the monolayer, and large compared to the width and depth
of the needle the behaviour displayed in figures 2–5 should still hold. If one reduces
the surface viscosity such that Ba ≈ b the drag force will depart from the ideal curve
and cross-over toward a constant drag determined entirely by the water viscosity
(Levine et al. 2003).
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Figure 5. As figure 4 but for a subphase of depth H 	 a. Dotted lines are asymptotics
according to (3.9).

In experiments with the needle viscometer (Brooks et al. 1999; Ding et al. 2002a, b) a
linear relation between drag and Boussinesq number was used. This gives good results
if one works in the regime Ba � 1 (Brooks et al. 1999), where the constant term can
be neglected and the logarithmic correction is weak. However as one enters the regime
b/a < B < 1 the linear approximation is inadequate and leads to erroneous results
(Ding et al. 2002a, b).†The real advantage of working with a needle as compared to a
disk arises from the fact that the needle is still sensitive to the surface viscosity in the
regime b/a < B < 1 where the disk drag no longer changes with B. The drawback
of using a needle is loss of symmetry, leading to more complicated relations between
drag and surface viscosity in the regime b/a < B < 1, where this loss of symmetry
becomes apparent in the flow profile. Here we have given the precise relationships
for needles longer than the depth of the water and for needles in deep water. A disk
of the diameter of the width of a needle is more sensitive to the surface viscosity

† For example Ding et al. (2002b) estimate the surface shear viscosity of DPPC in the liquid
condensed/liquid expanded coexistence region using a magnetic needle viscometer to be in the
range of 1 msP< ηs <1 sP (1 sP=1 surface Poise= 1 g s−1), in contradiction to Klingler McConnell’s
(1993) measurements (ηs < µ sP) using Browninan motion. Schwartz et al. (1994) found the surface
shear viscosity of the same coexistence region in pentadecanoic acid to be below ηs < 10−5 sP using
a channel flow viscometer. Using a linear relation between the force and the viscosity obviously
leads to surface shear viscosities that are overestimated by orders of magnitude.
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than is the needle, which in turn is more sensitive to the surface viscosity than a disk
of a diameter comparable to the length of the needle. If one miniaturizes the object
experiencing the viscous drag, it makes more sense to perform the miniaturization in
both lateral directions rather than in one.

The drag on objects in the monolayer is non-analytic in the limit of large surface
viscosity and always reduced by the subphase viscosity as compared to the isolated
monolayer system. Translational motion of objects therefore is less sensitive to the
surface shear viscosity than rotational motion, which has an analytical behaviour in
the limit of large surface viscosities.† A surface rheometer of highest sensitivity hence
will be a rheometer making use of miniaturized circular rotating disks immersed in
the surface.

5. Conclusions
The drag on a needle in deep and shallow water has been calculated numerically.

Asymptotic expressions for small and large Boussinesq numbers have been derived.
A linear relation between the drag force and the surface shear viscosity as used by
Brooks et al. (1999) and Ding et al. (2002a, b) fails to describe the behaviour in the
regime where the ratio between surface viscosity and bulk viscosity is smaller than
the length of the needle. Data extracted from experiments with needle viscometers
need to be reanalysed.

I thank H. Stone for proposing the calculation of the broadside-on motion and for
many useful comments, H. Möhwald for generous support, D. K. Schwartz, Grigor
Bantchev and P. Heinig for stimulating discussions.

Appendix A. Oseen tensor in direct space
The Oseen tensor in direct space is

O(r s) =
1

(2π)2

∫
d2kÔ(k)e−ik · rs . (A 1)

A.1. Deep water limit

Here we derive the Oseen tensor O(r s) in real space in the limit H → ∞. We
decompose the two-dimensional vector k and the Oseen tensor into its components
k cos θ and k sin θ along and perpendicular to r s to obtain

O(r s) =
1

(2π)2

∫ π

−π

dθ

∫ ∞

0

k dk

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)
e−ikrs cos θ

ηk(1 + Bka)

=
1

(2π)2

∫ ∞

0

dk




2πJ1(krs)

krs

0

0 2π

(
J0(krs) − J1(krs)

krs

)

 1

η(1 + Bka)

=
1

(2π)

∫ ∞

0

ds
J0(s)

η(rs + Bsa)

(
1 0
0 0

)
+

1

(2π)

(
1 0
0 −1

)∫ ∞

0

ds
1

η(rs + Bsa)

d2

ds2
J0(s)

(A 2)

† This statement is true for any bounded shape of the object, as the integration over the force
profile in (2.12) does not alter the asymptotic behaviour of the flow far away from the object.
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where in the last line we substituted k = s/rs under the integral. Two partial
integrations of the second term in the last line in (A 2) lead to

2πO(r s) =

∫ ∞

0

dsJ0(s)


1 +

d2

ds2
0

0 − d2

ds2


 1

η(rs + Bsa)

+

[(
1 0
0 −1

)
(−J0(s))

d

ds

1

η(rs + Bsa)

]∞

0

=




1 + (Ba)2
d2

dr2
s

0

0 −(Ba)2
d2

dr2
s


 1

(ηBa)

∫ ∞

0

dsJ0(s)
1

(rs/Ba + s)

− Ba

ηr2
s

(
1 0
0 −1

)
. (A 3)

In the last line in (A 3) we have replaced the differentiation with respect to s by a
differentiation with respect to rs . The remaining integral can be expressed by Struve
and Bessel functions of the second kind (Gradshteyn & Ryshik 1981, 6.562-2)

O(r s) =




1 + (Ba)2
d2

dr2
s

0

0 −(Ba)2
d2

dr2
s


 1

(2πηBa)

π

2
(H0(rs/Ba) − N0(rs/Ba))

− Ba

(2πηr2
s )

(
1 0
0 −1

)

=
1

(4ηrs)

(
H1(rs/Ba) − N1(rs/Ba) − 2Ba

πrs

)(
1 0
0 −1

)

+
1

(4ηBa)
(H0(rs/Ba) − N0(rs/Ba))

(
0 0
0 1

)
. (A 4)

Noting that:

r sr s

r2
s

=

(
1 0
0 0

)
and

δr2
s − r sr s

r2
s

=

(
0 0
0 1

)
(A 5)

we find (2.13a).

A.2. Shallow water limit

In the shallow water limit a similar treatment leads to

O(r s) =
1

(2π)

∫ ∞

0

ds
sJ0(s)

η
(
r2
s /H + Bs2a

) (
1 0
0 0

)

[4pt] +
1

(2π)

(
1 0
0 −1

)∫ ∞

0

ds
s

η
(
r2
s /H + Bs2a

) d2

ds2
J0(s). (A 6)
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The second integral in (A 6) can be expressed by the first by noting that∫ ∞

0

ds
s

α2 + s2

d2

ds2
J0(s) = −

∫ ∞

0

ds

(
d

ds

s

α2 + s2

)
d

ds
J0(s)

=
d

dα

∫ ∞

0

ds

(
α

α2 + s2

)
d

ds
J0(s)

=
d

dα

α

α2 + s2
J0(s)

∣∣∣∣
∞

0

− d

dα

∫ ∞

0

ds J0(s)
d

ds

α

α2 + s2

= − d

dα

1

α
− d2

dα2

∫ ∞

0

ds
sJ0(s)

α2 + s2
. (A 7)

The first integral is (Gradshteyn & Ryshik 1981, 6.531-4)∫ ∞

0

ds
sJ0(s)

α2 + s2
= K0(α). (A 8)

Insertion of (A 7) and (A 8) into (A 6) with α2 = r2
s /BHa yields the shallow water

Oseen tensor in (2.23b).

Appendix B. Asymptotics
B.1. Deep water limit, edge-on motion

For H → ∞ and small Boussinesq number and a constant force profile we find that

Ū =
1

2a

∫ a

−a

u(x) dx =
F

a2

∫ 2a

0

d(x − x ′) Oxx(|x − x ′|ex)

∫ a−(x−x′)/2

0

d
x + x ′

2

=
Fdrag

4πηa

∫ 2/B

0

ds

(
2

s
− B

) (
π

2
H1(s) − π

2
N1(s) − 1/s

)

=
Fdrag

4πηa

[
−B

(
s − π

2
H0(s) +

π

2
N0(s) − ln(x)

)]2/B

0

+
Fdrag

4πηa
2

[
arcsinh

(
1

B

)
+

∫ 2/B

0

ds

s

(
π

2
H1(s) − π

2
N1(s) − 1/s − s√

s2 + 4

)]

=
Fdrag

2πηa

[
ln

(
2

B

)
+ c − 1 + o(B)

]
, (B 1)

where

c =

∫ ∞

0

ds

s

(
π

2
H1(s) − π

2
N1(s) − 1/s − s√

s2 + 4

)
≈ 0.276. (B 2)

Combining (B 3) and (B 4) yields (3.6a).

B.2. Shallow water limit, edge-on motion

For H → 0 we find by a similar treatment that:

Ū =
FH

2πηa2

1√
BH/a

∫ 2/
√

BH/a

0

ds

(
1

s
− K1(s)

) (
1

s
−

√
BH/a

2

)

=
FH

2πηa2

1√
BH/a

∫ 2/
√

BH/a

0

ds
1

s2

(
ln

s

2
+ γ + K0(s)

)
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≈ FH

2πηa2

1√
BH/a

[
c′ −

∫ ∞

2/
√

BH/a

ds
1

s2

(
ln

s

2
+ γ

)]
+ o(B3/2)

≈ FH

4ηa2

1√
BH/a

(
1 +

√
BH/a

π

(
ln

1√
BH/a

+ γ + 1

))
, (B 3)

where

c′ =

∫ ∞

0

ds
1

s2

(
ln

s

2
+ γ + K0(s)

)
≈ π/2. (B 4)

Equation (B 3) is equivalent to (3.6b). The derivation of the asymptotic behaviour for
broadside-on motion of the needle follows similar lines.

Appendix C. Numerics
We approximate the force profile τx(x) by

τx(x) = τi for xi − h/2 < x < xi + h/2, (C 1)

where the xi are points spaced at a distance h < Ba or h <
√

BHa on the needle.
The velocity ui at position xi is then given by

ui = Aijτj , (C 2)

where Aij is a Toeplitz matrix given by

Aij =

∫ xj −xi+h/2

xj −xi−h/2

Oxx(xex) dx ≈




h

4πηBa

(
ln

4Ba

h
− γ + 3/2

)
for i = j, H → ∞

h

4πηBa

(
ln

4
√

BHa

h
− γ + 3/2

)
for i = j, H → 0

h × Oxx((xi − xj )ex) for i �= j

(C 3)

for the edge-on motion and

Aij =

∫ yj −yi+h/2

yj −yi−h/2

Oxx(yey) dy ≈




h

4πηBa

(
ln

4Ba

h
− γ + 1/2

)
for i = j, H → ∞

h

4πηBa

(
ln

4
√

BHa

h
− γ + 1/2

)
for i = j, H → 0

h × Oxx((yi − yj )ex) for i �= j

(C 4)

for the broadside-on motion. The force profile is found by the inversion of (C 2) using
Trench’s (Trench 1964) algorithm.

τi = (A−1)ij uj (C 5)

where uj = U for all j . The drag force is then given by

Fdrag = h ×
∑

i

τi . (C 6)
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